
ECE566
Enterprise Storage Architecture

Spring 2024

Hard disks, SSDs, and the I/O subsystem
Tyler Bletsch

Duke University

Slides include material from Vince Freeh (NCSU)

2

Hard Disk Drives
(HDD)

3

History

• First: IBM 350 (1956)

• 50 platters (100 surfaces)

• 100 tracks per surface (10,000 tracks)

• 500 characters per track

• 5 million characters

• 24” disks, 20” high

4

Overview

• Record data by magnetizing ferromagnetic material

• Read data by detecting magnetization

• Typical design

• 1 or more platters on a spindle

• Platter of non-magnetic material (glass or aluminum), coated with
ferromagnetic material

• Platters rotate past read/write heads

• Heads ‘float’ on a cushion of air

• Landing zones for parking heads

5

Basic schematic

6

Generic hard drive

Data Connector

^ (these aren’t common any more)

7

Types and connectivity (legacy)

• SCSI (Small Computer System Interface):

• Pronounced “Scuzzy”

• One of the earliest small drive protocols

• The Standard That Will Not Die:
the drives are gone, but most enterprise
gear still speaks the SCSI protocol

• Fibre Channel (FC):

• Used in some Fibre Channel SANs

• Speaks SCSI on the wire

• Modern Fibre Channel SANs can
use any drives: back-end ≠ front-end

• IDE / ATA:

• Older standard for consumer drives

• Obsoleted by SATA in 2003

8

Types and connectivity (modern)

• SATA (Serial ATA):

• Current consumer standard

• Series of backward-compatible revisions
SATA 1 = 1.5 Gbit/s, SATA 2 = 3 Gbit/s,
SATA 3 = 6.0 Gbit/s, SATA 3.2 = 16 Gbit/s

• Data and power connectors are hot-swap ready

• Extensions for external drives/enclosures (eSATA),
small all-flash boards (mSATA, M.2),
multi-connection cables (SFF-8484), more

• Usually in 2.5” and 3.5” form factors

• SAS (Serial-Attached-SCSI)

• SCSI protocol over SATA-style wires

• (Almost) same connector

• Can use SATA drives on SAS controller,
not vice versa

9

Hard drive capacity

http://en.wikipedia.org/wiki/File:Hard_drive_capacity_over_time.png

http://en.wikipedia.org/wiki/File:Hard_drive_capacity_over_time.png

10

Seeking

• Steps

• Speedup

• Coast

• Slowdown

• Settle

• Very short seeks (2-4 tracks): dominated by settle time

• Short seeks (<200-400 tracks):

• Almost all time in constant acceleration phase

• Time proportional to square root of distance

• Long seeks:

• Most time in constant speed (coast)

• Time proportional to distance

11

Average seek time

• What is the “average” seek? If

1. Seeks are fully independent and

2. All tracks are populated:

➔ average seek = 1/3 full stroke

• But seeks are not independent

• Short seeks are common

• Using an average seek time for all seeks yields a poor model

12

Zoning

• Note

• More linear distance at edges then at center

• Bits/track ~ R (circumference = 2pR)

• To maximize density, bits/inch should be the same

• How many bits per track?

• Same number for all ➔ simplicity; lowest capacity

• Different number for each ➔ very complex; greatest capacity

• Zoning

• Group tracks into zones, with same number of bits

• Outer zones have more bits than inner zones

• Compromise between simplicity and capacity

13

Sparing

• Reserve some sectors in case of defects

• Two mechanisms

• Mapping

• Slipping

• Mapping

• Table that maps requested sector → actual sector

• Slipping

• Skip over bad sector

• Combinations

• Skip-track sparing at disk “low level” (factory) format

• Remapping for defects found during operation

14

Caching and buffering

• Disks have caches

• Caching (eg, optimistic read-ahead)

• Buffering (eg, accommodate speed differences bus/disk)

• Buffering

• Accept write from bus into buffer

• Seek to sector

• Write buffer

• Read-ahead caching

• On demand read, fetch requested data and more

• Upside: subsequent read may hit in cache

• Downside: may delay next request; complex

15

Command queuing

• Send multiple commands (SCSI)

• Disk schedules commands

• Should be “better” because disk “knows” more

• Questions

• How often are there multiple requests?

• How does OS maintain priorities with command queuing?

16

Time line

17

Disk Parameters

Toshiba MK1003
(early 2000s)

Seagate Savvio
(~2005)

Seagate 6TB
Enterprise HDD
(2016)

Diameter 1.8” 2.5” 3.5”

Capacity 10 GB 73 GB 6 TB

RPM 4200 RPM 10000 RPM 7200 RPM

Cache 512 KB 8 MB 128 MB

Platters 1 2 ~6

Average Seek 7 ms 4.5 ms 4.16 ms

Sustained Data Rate 16 MB/s 94 MB/s 216 MB/s

Interface ATA SCSI SAS/SATA

Use Ancient iPod Laptop Desktop

Improving ☺

Improving ☺

About equal

Improving ☺

18

Solid State Disks
(SSD)

19

Introduction

• Solid state drive (SSD)

• Storage drives with no mechanical component

• Available up to 16TB capacity (as of 2019)

• Classic: 2.5” form factor (card in a box)

• Modern: M.2 or newer NVMe (card out of a box)

Source: wikipedia

20

Evolution of SSDs

• PROM – programmed once, non erasable

• EPROM – erased by UV lighting*, then reprogrammed

• EEPROM – electrically erase entire chip, then reprogram

• Flash – electrically erase and rerecord a single memory cell

• SSD - flash with a block interface emulating controller

* Obsolete, but totally awesome looking because they had a little window:

21

Flash memory primer

• Types: NAND and NOR

• NOR allows bit level access

• NAND allows block level access

• For SSD, NAND is mostly used, NOR going out of favor

• Flash memory is an array of columns and rows

• Each intersection contains a memory cell

• Memory cell = floating gate + control gate

• 1 cell = 1 bit

22

Memory cells of NAND flash

Single-level cell (SLC) Multi-level cell (MLC) Triple-level cell (TLC)

Single (bit) level cell Two (bit) level cell Three (bit) level cell

Fast:
25us read/100-300 us
write

Reasonably fast:
50us read, 600-900us
write

Decently fast:
75us read, 900-1350 us
write

Write endurance -
100,000 cycles

Write endurance –
10000 cycles

Write endurance – 5000
cycles

Expensive Less expensive Least expensive

23

SSD internals

Package contains multiple dies (chips)

Die segmented into multiple planes

A plane with thousands(2048) of blocks + IO buffer pages

A block is around 64 or 128 pages

A page has a 2KB or 4KB data + ECC/additional information

24

SSD operations

• Read

• Page level granularity

• 25us (SLC) to 60us (MLC)

• Write

• Page level granularity

• 250us (SLC) to 900us(MLC)

• 10 x slower than read

• Erase

• Block level granularity, not page or word level

• Erase must be done before writes

• 3.5ms

• 15 x slower than write

25

SSD internals

• Logical pages striped over multiple packages

• A flash memory package provides 40MB/s

• SSDs use array of flash memory packages

• Interfacing:

• Flash memory → Serial IO → SSD Controller → disk interface
(SATA)

• SSD Controller implements Flash Translation Layer (FTL)

• Emulates a hard disk

• Exposes logical blocks to the upper level components

• Performs additional functionality

26

SSD controller

• Differences in SSD is due to controller

• Performance loss if controller not properly implemented

• Has CPU, RAM cache, and may have battery/supercapacitor

• Dynamic logical block mapping

• LBA to PBA

• Page level mapping (uses large RAM space ~512MB)

• Block level mapping (expensive read/write/modify)

• Most use hybrid

• Block level with log sized page level mapping

27

Preemptive erasure

• Preemptive movement of cold data

• Recycle invalidated pages

• Performed by garbage collector

• Background operation

• Triggered when close to having no more unused blocks

&

28

Wear leveling

• SSDs wear out

• Each memory cell has finite flips

• All storage systems have finite flips even HDD

• SSD finite flips < HDD

• HDD failure modes are larger than SSD

• General method: over-provision unused blocks

• Write on the unused block

• Invalidate previous page

• Remap new page

29

Dynamic wear leveling

• Only pool unused blocks

• Only non-static portion is wear
leveled

• Controller implementation easy

• Example: SSD lifespan
dependent on 25% of SSD

Source: micron

30

Static wear leveling

• Pool all blocks

• All blocks are wear leveled

• Controller complicated
• needs to track cycle # of all blocks

• Static data moved to blocks
with higher cycle #

• Example: SSD lifespan
dependent on 100% of SSD

Source: micron

31

SSD TRIM! Sent from the OS

• TRIM

• Command to notify SSD controller about deleted blocks

• Sent by filesystem when a file is deleted

• Avoids write amplification and improves SSD life

32

Using SSD (1)

• SSD as main storage device
• NetApp “All Flash” storage controllers

• 300,000 read IOPS

• < 1 ms response time

• > 6Gbps bandwidth

• Cost: $big

• Becoming increasingly common as SSD costs fall

• Hybrid storage (tiering)
• Server flash

• Client cache to backend shared storage

• Accelerates applications

• Boosts efficiency of backend storage (backend demand decreases by upto
50%)

• Example: NetApp Flash Accel acts as cache to storage controller

• Maintains data coherency between the cache and backend storage

• Supports data persistent for reboots

33

Using SSD (2)

• Hybrid storage

• Flash array as cache (PCI-e cards flash arrays)

• Example: NetApp Flash Cache in storage controller

• Cache for reads

• SSDs as cache

• Example: NetApp Flash Pool in storage controller

• Hot data tiered between SSDs and HDD backend storage

• Cache for read and write

34

NetApp EF540 flash array

• 2U

• Target: transactional
apps with high IOPS and
low latency

• Equivalent to > 1000
15K RPM HDDs

• 95% reduction in space,
power, and cooling

• Capacity: up to 38TB

Source: NetApp

35

Differences between SSD and HDD

SSD HDD

Uniform seek time Different seek time for different sectors

Fast seek time – random read/writes as
fast as sequential read/writes

Seek time dependent upon the distance

Cost (Intel 530 Series 240GB – $209)
• Capacity – $0.87/GB
• Rate – $0.005/IOPS
• Bandwidth - $0.38/Mbps

Cost (Seagate Constellation 1TB
7200rpm - $116)
• Capacity – $0.11/GB
• Rate – $0.55/IOPS
• Bandwidth - $0.99/Mbps

Power:
Active power: 195mW – 2W
Idle power: 125mW – 0.5 W
Low power consumption, No sleep
mode

Power:
Average operating power: 5.4W
Higher power consumption, sleep mode
zero power, higher wake up cost

36

Differences between SSD and HDD

SSD HDD

> 10,000 to > 1million IOPS Hundreds of IOPS

Read/write in microseconds Read/write in milliseconds

No mechanical part – no wear and tear Moving part – wear and tear

MTBF ~ 2 million hours MTBF ~ 1.2 million hours

Faster wear of a memory cell when it
is written multiple times

Slower wear of the magnetic bit
recording

37

Intel X-25E -
$345

(older)
SLC
32 GB
SATA II
170-250MB/s
Latency 75-85us

Intel 530 - $209

(new)

MLC

240GB

SATA III

up to 540MB/s

Latency 80-85us

Samsung 840
EVO - $499

(new)

TLC

1TB

SATA III

up to 540MB/s

38

Which is cheaper?

HDD?

Yes!

Cheaper per gigabyte of
capacity.

SSD?

Yes!

Cheaper per IOPS
(performance).

or

39

Workloads

Workloads SSD HDD Why ?

High write Y Wear for SSD

Sequential IO
(e.g. media files)

Y Y Both SSD and HDD do great
on sequential

Log files (small writes) Y Faster seek time

Database read queries Y Faster seek time

Database write queries Y Faster seek time

Analytics – HDFS Y Y SSD – Append operation faster
HDD – higher capacity

Operating systems Y SSD: FAST!!!!

40

Other Flash technologies - NVDIMMS

• Revisiting NVRAM
• DDR DIMMS + NAND Flash

• Speed of DIMMS
• extensive read/write cycles

for DIMMS
• Non volatile nature of NAND

Flash

• Support added by BIOS
• Backup to NAND Flash
• Triggered by HW SAVE

signal

• Stored charge
• Super capacitors
• Battery packs

(SNIA - NVDIMM Technical Brief)

41

In future - persistent memory

Source: Andy Rudoff, Intel

• NVM latency closer to DRAM

• Types

• Battery-backed DRAM, NVM with caching, Next-gen NVM

• Attributes:

• Bytes-addressable, LOAD/STORE access, memory-like, DMA

• Data not persistent until flushed

42

Basics of IO Performance
Measurement

43

Motivation and basic terminology

• We cover performance measurement in detail later in the
semester, but you may need the basics for your project sooner
than that...

• The short version:

• Sequential workload: MB/s

• Even an SSD does better sequential than random because of
caching and other locality optimizations

• Random workload: IO/s (commonly written IOPS)

• You need to indicate the IO size, but it’s not part of the metric

• Don’t forget: latency (ms)

44

Measurement methodology

• Basic test: do X amount of IO and divide by time T.

• Both X and T may be specified or measured

• Example:

• Measure time to do 100,000 IOs (X given, T free variable)

• Write to disk at max rate for 60 seconds, look at file size
(T given, X free variable)

• Problem: measurement variance

45

Combating measurement variance (1)

• Measurement varying too much? Make sure your tests are
long enough!

• Otherwise you’re testing tiny random effects instead of the actual
phenomenon under study...

46

Combating measurement variance (2)

• Measurement variance never goes away

• Need to characterize it when presenting results, or you won’t be
trusted!

• How? Take multiple repetitions show average and standard deviation
(or other variance metric)

• ALL data requires variance to be characterized!
(not just in this course, but in your life)

• For your projects, failure to characterize variance is likely an automatic
request for resubmission!!

• How to present:

• In tables, show variance next to average (e.g. “251.2 ± 11.6”)

• In graphs, show variance with error bars, e.g.:

0

50

100

150

200

250

300

test1 test2

47

Hands-on with the
Linux storage subsystem

I’m going to live demo a lot of command-line tools and concepts:
watching live or reviewing a video recording
may be of more value than just the slides.

48

Fundamental concepts in UNIX

• UNIX figured out a lot of what is smart in OS design.

• One insight: Everything is a file
• All hardware is represented as special device files. Described by

“major” and “minor” numbers to tell kernel what device you mean.

• Devices automatically created in special filesystem “/dev”

• Includes block devices (e.g., HDDs and SSDs)

• /dev/sda, /dev/sdb, /dev/sdc, … = SCSI Disk A, B, C, …

• List block devices with lsblk:

49

Doing basic IO manually

• Can open/read/write/close block devices like any other
• Requires root access by default (e.g. via sudo)

• Any program can do this – no special interface!

• Bash commands, python, etc.

• Useful to have a tool for doing basic IO with lots of options
• Introducing dd!

• Basic usage:

• dd if=INPUTFILE of=OUTPUTFILE bs=1k count=32

• dd if=/dev/sdb of=/dev/null bs=1 count=1

• Lots more options, see manpage for details!

Defaults to stdin if omitted Defaults to stdout if omitted
Defaults to

512 if omitted

Defaults to

all if omitted

Read from disk B Discard result 1 byte in total

50

Block device tracing

• Kernel can trace the activity to block devices for us

• Install it:
sudo apt install blktrace

• Default: blktrace stores trace in binary format in a file;
blkparse used to view it in text

• Can chain the two to get live trace on screen (as root):

blktrace -d /dev/sdb -o - | blkparse -i -

Device major,minor

CPU#
Sequence#

Time (s) PID “Action”
“RWBS”

Block#
#Blocks

App name

Q=Queued
G=Get request
P/U= “Plug”/”Unplug”
I=Insert into device queue
D=Device command issued
C=Completed

See man blkparse for more

R=Read
W=Write

N=None (placeholder)

D=Discard (trim)

+

A=readahead

S=synchronous
 more…

51

Let’s directly use this disk!

• Write “hello” to the very front of it? Easy:

• echo hello > /dev/sdb

• Read the raw bytes of the disk?

• Could use ‘cat’, but it will read the whole disk…

• Can use ‘dd’, but what about non-text content?

• Need a way to interpret binary bytes so we can see them onscreen

• We want a hex dump

• Three flavors:

•hd: Gives binary+ascii dump by default (other options available)

•hexdump: Get a binary+ascii dump with hexdump –C

(other options available)

•od: Gives octal by default (other options available)

* means “this row repeats for a while

52

Living without a filesystem

• So far, no filesystem. Screw it – we don’t need a filesystem!

• I put my taxes at offset 1000

echo “IRS form 1040 …” | dd of=/dev/sdb bs=1 seek=1000

• I put my dog picture at offset 2000

dd if=dog.jpg of=/dev/sdb bs=1 seek=2000

• I can retrieve the stuff!

53

Inventing the filesystem

• Wow, remembering these offsets is hard.
I’ll write them down…ON THE DISK!

• echo “taxes: 1000, dog: 2000, …” > /dev/sdb

• Wow, manually doing the seeks to read/write areas of the disk is hard.
I’ll invent OS functions that do it for me…and update the file locations
automatically!!!!!!!

• I’ll call the data containers “files”

• I’ll organize them into hierarchical “directories”

• I’ll give them the concept of “size” so I know when they end

• I’ll keep track of what areas of the disk aren’t used and call that “free”

• I’ll call that special info that describes files my
“meta-data”

• To access data, programs will “open” the file
(confirm it exists), then “read” and “write” to it,
then “close” it – that’s a great interface!

54

Life was good, until….

• “I love that my whole hard drive is now organized!”

• But wait, what’s this? What if you have ANOTHER DRIVE?????

55

Filesystem trees in UNIX

• Another UNIX insight: One global hierarchy
• A UNIX system has a single root directory with a root file system

• Other filesystems can be “mounted” in directories under the root

• Also, filesystems don’t have to just hold “real” files on “real”
storage devices – there are virtual filesystems:

• /proc – info about processes and basic system info (used by top)

• /sys – info about kernel (used by blktrace)

• /dev – access to device files themselves (managed by udev)

• Ramdisk – files live in memory, wiped on reboot (e.g. tmpfs)

“Real” root (/)

Other FS root

Mount

the other FS

“Real” root (/)

56

See what’s mounted

• Two commands to see what’s mounted:
• mount – shows all filesystems (real and virtual)

• df – shows disk free space on filesystems that have that concept

• (Side-effect: shows fewer “fake” filesystems, more concise)

Root device!
Device files

Ramdisk temp stuff

Tons of virtual

filesystems on

modern Linux

57

Partitioning

• What if I want to put multiple filesystems on one device?

• Examples:

• Multiple operating systems (e.g. Windows and Linux)

• An area for files and an area for virtual memory swap space

• Keep the OS separate from user home directories (so user data
filling up doesn’t affect the OS)

• Solution: partitioning

• Widely supported scheme to divide up a disk; partitions are contiguous
and small in number (usually 1-3).

• Partitions labeled with integer that hints at what type of data is there.

• Two standards: MBR (deprecated) and GPT (GUID Partition Table).

• The partition table occupies beginning of disk, file systems actually
live within partitions. The OS knows about this and gives partitions
numbered device files:
/dev/sdb is partitioned into /dev/sdb1, /dev/sdb2, etc.

58

Partitioning with cfdisk

• Run cfdisk /dev/sdb

• Follow prompts and we can make partitions, set type, etc.

• Hit “Write” when done. Result in lsblk:

New (or erased)

disk

We want this guy

59

Filesystem choices

• Let’s put a filesystem on, but which one?

• Common picks:

• ext4 – common Linux default

• btrfs – fancy Linux option with lots of special features

• FAT – classic Windows/DOS filesystem still in use on SD cards;
called vfat in Linux

• NTFS – modern Windows filesystem

• HFS+ - modern Mac OSX filesystem

• Need to initialize a filesystem: write on-disk metadata
structures on that represent empty filesystem. Use mkfs

• Let’s pick a simple filesystem: vfat
(Why? Because ext4 does fancy background stuff that gets noisy to trace)

• Run mkfs.vfat /dev/sdb1

• Watch blktrace as it goes – wheeeee!

60

Let’s mount it

• Make an empty dir as a mountpoint: mkdir /mnt/blah

• Mount it: mount /dev/sdb1 /mnt/blah

• Kernel will scan partition and auto-detect type of filesystem

• Will load correct filesystem driver

• Now, OS calls to paths under there will get handled by that driver

• Driver satisfies all OS calls by doing readblock/writeblock requests to
the underlying block device

• That’s how filesystems work!
User apps

VFS

ext4 vfat ntfs

Buffer cache

Disk drivers

Physical disk

< Common filesystem interface

< Cache for disk blocks

Figure adapted from Gotzon Gregor

A cache! Let’s

experiment and

understand this…

61

Test the block cache (1)

echo hi > file

• No blktrace output! (OS cache is writeback by default)

cat file

• No blktrace output! (Cache hit)

(Wait about a minute, it posts later to blktrace)

• Yes blktrace output! (Cache being flushed on a timer, see metadata+data changes)

echo hi > file

• No blktrace output! (Writeback cache again)

sync

• Yes blktrace output! (This command forces OS to flush cache)

cat file

• No blktrace output! (Still a hit, just block isn’t dirty in cache)

62

Test the block cache (2)

echo 3 > /proc/sys/vm/drop_caches

• Writing to this special file tells kernel to drop caches;

• No blktrace output though, but ramcache was cleared.

cat file

• Blktrace output – we miss because we dropped caches

umount /mnt/blah

mount –o sync /dev/sdb1 /mnt/blah

• Unmount and remount with the ‘sync’ mount option

• Forces writethrough cache mode!

echo hi > file

• Blktrace output immediately! No writeback cache, writethrough instead

cat file

• No blktrace output - it still caches reads

63

Let’s trace from the other side

• We’ve been tracing the block device

• What about the OS requests?

strace

• Shows each OS syscall done by a program.

• Works on a command by default; can attach to already-running
program if desired

• Have to wade through some “noise” (unrelated calls), not hard with a
little experience

• VERY powerful and useful – can determine behavior of software
without looking at source code or machine instructions!

User apps

VFS

ext4 vfat ntfs

Buffer cache

Disk drivers

Physical disk

blktrace

strace

64

strace example

root@esaXX:/mnt/blah# strace dd if=/dev/sdb bs=1 count=1

execve("/usr/bin/dd", ["dd", "if=/dev/sdb", "bs=1", "count=1"], 0x7ffec5104518 …) = 0

{A bunch of openat, pread64, mmap, mprotect, rt_sigaction, brk, etc.: set up dynamic libraries and prep malloc (ignore)}

openat(AT_FDCWD, "/dev/sdb", O_RDONLY) = 3

dup2(3, 0) = 0

close(3) = 0

lseek(0, 0, SEEK_CUR) = 0

{A bunch of openat and read calls relating to “locale” – language translations (ignore)}

read(0, "\0", 1) = 1

write(1, "\0", 1) = 1

close(0) = 0

close(1) = 0

write(2, "1+0 records in\n1+0 records out\n", 311+0 records in

1+0 records out

) = 31

write(2, "1 byte copied, 0.000672287 s, 1."..., 381 byte copied, 0.000672287 s, 1.5 kB/s) = 38

write(2, "\n", 1

) = 1

close(2) = 0

exit_group(0) = ?

+++ exited with 0 +++

Open the input device, rename it to file descriptor 0 (dd
likes to pretend its input is always stdin, which is 0)

Read the one requested byte from fd 0 (disk) and write
to fd 1 (stdout), then close both.

Report to stderr the statistics. Blue stuff is dd’s actual
output to stderr; black is strace telling us about it.

65

Let’s play

• Let’s try some other strace+dd combos,
and let’s watch blktrace as we do!

• Things to observe
• Note how bs sets the read/write size for OS calls, but a single call

could turn into many block IOs

• Note the effect of read-ahead caching by the OS

• Note how the cache can be a mix of hits and misses

• We can use the “-t” option with blkparse to get timing info

• Observe the correlation between block operations and slower dd
results (i.e., cache misses)

66

Architecture conclusions

• Disks are block devices

• All devices in Linux/UNIX are represented by device files; can directly
interact with

• Disk blocks are cached in RAM by operating system (buffer cache)

• Block devices are cumbersome to manually store data,
so we invent filesystems

• OS handles filesystems – many filesystems can be mounted at once;
the VFS layer pivots among them, using the right filesystem driver

• Filesystem driver will issue read/write requests to disk driver

User apps

VFS

ext4 vfat ntfs

Buffer cache

Disk drivers

Physical disk

< Common filesystem interface

< Cache for disk blocks

Figure adapted from Gotzon Gregor

67

Tool conclusions

• We learned lots of great tools/commands:
• lsblk: View block devices

• df: View attached “real” filesystems (and free space)

• mount: Without arguments, shows all mounted filesystems

• dd: Simple tool to do sequential IO operations

• hd and hexdump: View binary data in human-readable way

• mount and umount: Mount and unmount filesystems

• cfdisk: Create and manage disk partitions

• mkfs.*: Create various filesystems on a block device

• blktrace and blkparse: Trace IO operations to physical block devices

• strace: Trace system calls being made by a program

• sync: Force OS to flush all dirty blocks in writeback cache to disk

• echo 3 > /proc/sys/vm/drop_caches: Force OS to lose entire block cache content

68

Questions?

69

Backup slides

70

The I/O Subsystem

71

I/O Systems

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

Disk Disk

I/O
Controller

I/O
Controller

Graphics Network

interrupts

72

I/O Interface

Independent I/O
Bus

CPU

Interface Interface

Peripheral Peripheral

Memory

memory
bus

Seperate I/O instructions (in,out)

CPU

Interface Interface

Peripheral Peripheral

Memory

Lines distinguish between
 I/O and memory transferscommon memory

& I/O bus

73

Memory Mapped I/O

Single Memory & I/O Bus
No Separate I/O Instructions

CPU

Interface Interface

Peripheral Peripheral

Memory

ROM

RAM

I/O$

CPU

L2
$

Memory Bus

Memory Bus Adaptor

I/O bus

74

Programmed I/O (Polling)

CPU

IO Controller

device

Memory

Is the
data
ready?

read
data

store
data

yes

no

done? no

yes

busy wait loop
not an efficient
way to use the CPU
unless the device
is very fast!

but checks for I/O
completion can be
dispersed among
computationally
intensive code

75

Interrupt Driven Data Transfer

CPU

IO Controller

device

Memory

add
sub
and
or
nop

read
store
...
rti

user
program(1) I/O

interrupt

(2) save PC

(3) interrupt
service addr

interrupt
service
routine(4)User program progress only halted during

 actual transfer

76

Direct Memory Access (DMA)

• Interrupts remove overhead of polling…

• But still requires OS to transfer data one word at a time

• OK for low bandwidth I/O devices: mice, microphones, etc.

• Bad for high bandwidth I/O devices: disks, monitors, etc.

• Direct Memory Access (DMA)

• Transfer data between I/O and memory without processor control

• Transfers entire blocks (e.g., pages, video frames) at a time

• Can use bus “burst” transfer mode if available

• Only interrupts processor when done (or if error occurs)

77

DMA Controllers

• To do DMA, I/O device attached to DMA controller

• Multiple devices can be connected to one DMA controller

• Controller itself seen as a memory mapped I/O device

• Processor initializes start memory address, transfer size, etc.

• DMA controller takes care of bus arbitration and transfer details

• So that’s why buses support arbitration and multiple masters!

CPU ($)

Main

Memory Disk

DMA DMA

display NIC

I/O ctrl

Bus

78

I/O Processors

• A DMA controller is a very simple component

• May be as simple as a FSM with some local memory

• Some I/O requires complicated sequences of transfers

• I/O processor: heavier DMA controller that executes instructions

• Can be programmed to do complex transfers

• E.g., programmable network card

CPU ($)

Main

Memory Disk

DMA DMA

display NIC

IOP

Bus

79

Summary: Fundamental properties of I/O systems

Top questions to ask about any I/O system:

• Storage device(s):

• What kind of device (SSD, HDD, etc.)?

• Performance characteristics?

• Topology:

• What’s connected to what (buses, IO controller(s), fan-out, etc.)?

• What protocols in use (SAS, SATA, etc.)?

• Where are the bottlenecks (PCI-E bus? SATA protocol limit? IO
controller bandwidth limit?)

• Protocol interaction: polled, interrupt, DMA?

	Slide 1: ECE566 Enterprise Storage Architecture Spring 2024
	Slide 2: Hard Disk Drives (HDD)
	Slide 3: History
	Slide 4: Overview
	Slide 5: Basic schematic
	Slide 6: Generic hard drive
	Slide 7: Types and connectivity (legacy)
	Slide 8: Types and connectivity (modern)
	Slide 9: Hard drive capacity
	Slide 10: Seeking
	Slide 11: Average seek time
	Slide 12: Zoning
	Slide 13: Sparing
	Slide 14: Caching and buffering
	Slide 15: Command queuing
	Slide 16: Time line
	Slide 17: Disk Parameters
	Slide 18: Solid State Disks (SSD)
	Slide 19: Introduction
	Slide 20: Evolution of SSDs
	Slide 21: Flash memory primer
	Slide 22: Memory cells of NAND flash
	Slide 23: SSD internals
	Slide 24: SSD operations
	Slide 25: SSD internals
	Slide 26: SSD controller
	Slide 27: Preemptive erasure
	Slide 28: Wear leveling
	Slide 29: Dynamic wear leveling
	Slide 30: Static wear leveling
	Slide 31: SSD TRIM! Sent from the OS
	Slide 32: Using SSD (1)
	Slide 33: Using SSD (2)
	Slide 34: NetApp EF540 flash array
	Slide 35: Differences between SSD and HDD
	Slide 36: Differences between SSD and HDD
	Slide 37
	Slide 38: Which is cheaper?
	Slide 39: Workloads
	Slide 40: Other Flash technologies - NVDIMMS
	Slide 41: In future - persistent memory
	Slide 42: Basics of IO Performance Measurement
	Slide 43: Motivation and basic terminology
	Slide 44: Measurement methodology
	Slide 45: Combating measurement variance (1)
	Slide 46: Combating measurement variance (2)
	Slide 47: Hands-on with the Linux storage subsystem
	Slide 48: Fundamental concepts in UNIX
	Slide 49: Doing basic IO manually
	Slide 50: Block device tracing
	Slide 51: Let’s directly use this disk!
	Slide 52: Living without a filesystem
	Slide 53: Inventing the filesystem
	Slide 54: Life was good, until….
	Slide 55: Filesystem trees in UNIX
	Slide 56: See what’s mounted
	Slide 57: Partitioning
	Slide 58: Partitioning with cfdisk
	Slide 59: Filesystem choices
	Slide 60: Let’s mount it
	Slide 61: Test the block cache (1)
	Slide 62: Test the block cache (2)
	Slide 63: Let’s trace from the other side
	Slide 64: strace example
	Slide 65: Let’s play
	Slide 66: Architecture conclusions
	Slide 67: Tool conclusions
	Slide 68: Questions?
	Slide 69: Backup slides
	Slide 70: The I/O Subsystem
	Slide 71: I/O Systems
	Slide 72: I/O Interface
	Slide 73: Memory Mapped I/O
	Slide 74: Programmed I/O (Polling)
	Slide 75: Interrupt Driven Data Transfer
	Slide 76: Direct Memory Access (DMA)
	Slide 77: DMA Controllers
	Slide 78: I/O Processors
	Slide 79: Summary: Fundamental properties of I/O systems

