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Hard Disk Drives
(HDD)
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History

• First: IBM 350 (1956)

• 50 platters (100 surfaces)

• 100 tracks per surface (10,000 tracks)

• 500 characters per track

• 5 million characters

• 24” disks, 20” high
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Overview

• Record data by magnetizing ferromagnetic material

• Read data by detecting magnetization

• Typical design

• 1 or more platters on a spindle

• Platter of non-magnetic material (glass or aluminum), coated with 
ferromagnetic material

• Platters rotate past read/write heads

• Heads ‘float’ on a cushion of air

• Landing zones for parking heads
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Basic schematic
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Generic hard drive

Data Connector

^ (these aren’t common any more)
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Types and connectivity (legacy)

• SCSI (Small Computer System Interface):

• Pronounced “Scuzzy”

• One of the earliest small drive protocols

• The Standard That Will Not Die:
the drives are gone, but most enterprise 
gear still speaks the SCSI protocol

• Fibre Channel (FC):

• Used in some Fibre Channel SANs

• Speaks SCSI on the wire

• Modern Fibre Channel SANs can 
use any drives: back-end ≠ front-end

• IDE / ATA: 

• Older standard for consumer drives

• Obsoleted by SATA in 2003
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Types and connectivity (modern)

• SATA (Serial ATA):

• Current consumer standard

• Series of backward-compatible revisions
SATA 1 = 1.5 Gbit/s, SATA 2 = 3 Gbit/s,
SATA 3 = 6.0 Gbit/s, SATA 3.2 = 16 Gbit/s

• Data and power connectors are hot-swap ready

• Extensions for external drives/enclosures (eSATA),
small all-flash boards (mSATA, M.2),
multi-connection cables (SFF-8484), more

• Usually in 2.5” and 3.5” form factors

• SAS (Serial-Attached-SCSI)

• SCSI protocol over SATA-style wires

• (Almost) same connector

• Can use SATA drives on SAS controller, 
not vice versa
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Hard drive capacity

http://en.wikipedia.org/wiki/File:Hard_drive_capacity_over_time.png

http://en.wikipedia.org/wiki/File:Hard_drive_capacity_over_time.png
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Seeking

• Steps

• Speedup

• Coast

• Slowdown

• Settle

• Very short seeks (2-4 tracks): dominated by settle time

• Short seeks (<200-400 tracks): 

• Almost all time in constant acceleration phase

• Time proportional to square root of distance

• Long seeks: 

• Most time in constant speed (coast)

• Time proportional to distance
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Average seek time

• What is the “average” seek? If 

1. Seeks are fully independent and 

2. All tracks are populated:

➔ average seek = 1/3 full stroke

• But seeks are not independent

• Short seeks are common

• Using an average seek time for all seeks yields a poor model
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Zoning

• Note

• More linear distance at edges then at center

• Bits/track ~ R (circumference = 2pR)

• To maximize density, bits/inch should be the same

• How many bits per track?

• Same number for all ➔ simplicity; lowest capacity

• Different number for each ➔ very complex; greatest capacity

• Zoning

• Group tracks into zones, with same number of bits

• Outer zones have more bits than inner zones

• Compromise between simplicity and capacity
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Sparing

• Reserve some sectors in case of defects

• Two mechanisms

• Mapping

• Slipping

• Mapping

• Table that maps requested sector → actual sector

• Slipping

• Skip over bad sector

• Combinations

• Skip-track sparing at disk “low level” (factory) format

• Remapping for defects found during operation
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Caching and buffering

• Disks have caches

• Caching (eg, optimistic read-ahead)

• Buffering (eg, accommodate speed differences bus/disk)

• Buffering

• Accept write from bus into buffer

• Seek to sector

• Write buffer

• Read-ahead caching

• On demand read, fetch requested data and more

• Upside: subsequent read may hit in cache

• Downside: may delay next request; complex
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Command queuing

• Send multiple commands (SCSI)

• Disk schedules commands

• Should be “better” because disk “knows” more

• Questions

• How often are there multiple requests?

• How does OS maintain priorities with command queuing?
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Time line
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Disk Parameters

Toshiba MK1003
(early 2000s)

Seagate Savvio
(~2005)

Seagate 6TB 
Enterprise HDD 
(2016)

Diameter 1.8” 2.5” 3.5”

Capacity 10 GB 73 GB 6 TB

RPM 4200 RPM 10000 RPM 7200 RPM

Cache 512 KB 8 MB 128 MB

Platters 1 2 ~6

Average Seek 7 ms 4.5 ms 4.16 ms

Sustained Data Rate 16 MB/s 94 MB/s 216 MB/s

Interface ATA SCSI SAS/SATA

Use Ancient iPod Laptop Desktop

Improving ☺

Improving ☺

About equal 

Improving ☺
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Solid State Disks
(SSD)
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Introduction

• Solid state drive (SSD)

• Storage drives with no mechanical component

• Available up to 16TB capacity (as of 2019)

• Classic: 2.5” form factor (card in a box)

• Modern: M.2 or newer NVMe (card out of a box)

Source: wikipedia
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Evolution of SSDs

• PROM – programmed once, non erasable

• EPROM – erased by UV lighting*, then reprogrammed

• EEPROM – electrically erase entire chip, then reprogram

• Flash – electrically erase and rerecord a single memory cell

• SSD - flash with a block interface emulating controller

* Obsolete, but totally awesome looking because they had a little window:
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Flash memory primer

• Types: NAND and NOR 

• NOR allows bit level access

• NAND allows block level access

• For SSD, NAND is mostly used, NOR going out of favor

• Flash memory is an array of columns and rows 

• Each intersection contains a memory cell 

• Memory cell = floating gate + control gate 

• 1 cell = 1 bit 
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Memory cells of NAND flash

Single-level cell (SLC) Multi-level cell (MLC) Triple-level cell (TLC)

Single (bit) level cell Two (bit) level cell Three (bit) level cell

Fast: 
25us read/100-300 us 
write

Reasonably fast: 
50us read, 600-900us 
write

Decently fast:
75us read, 900-1350 us 
write

Write endurance -
100,000 cycles 

Write endurance –
10000 cycles

Write endurance – 5000 
cycles

Expensive Less expensive Least expensive
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SSD internals

Package contains multiple dies (chips)

Die segmented into multiple planes

A plane with thousands(2048) of blocks + IO buffer pages

A block is around 64 or 128 pages

A page has a 2KB or 4KB data + ECC/additional information
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SSD operations

• Read 

• Page level granularity 

• 25us (SLC) to 60us (MLC)

• Write 

• Page level granularity

• 250us (SLC) to 900us(MLC)

• 10 x slower than read

• Erase 

• Block level granularity, not page or word level 

• Erase must be done before writes

• 3.5ms 

• 15 x slower than write
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SSD internals

• Logical pages striped over multiple packages

• A flash memory package provides 40MB/s 

• SSDs use array of flash memory packages

• Interfacing: 

• Flash memory → Serial IO → SSD Controller → disk interface 
(SATA)

• SSD Controller implements Flash Translation Layer (FTL)

• Emulates a hard disk 

• Exposes logical blocks to the upper level components

• Performs additional functionality
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SSD controller

• Differences in SSD is due to controller 

• Performance loss if controller not properly implemented

• Has CPU, RAM cache, and may have battery/supercapacitor

• Dynamic logical block mapping

• LBA to PBA

• Page level mapping (uses large RAM space ~512MB)

• Block level mapping (expensive read/write/modify)

• Most use hybrid 

• Block level with log sized page level mapping
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Preemptive erasure

• Preemptive movement of cold data

• Recycle invalidated pages

• Performed by garbage collector

• Background operation

• Triggered when close to having no more unused blocks

&
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Wear leveling

• SSDs wear out 

• Each memory cell has finite flips

• All storage systems have finite flips even HDD

• SSD finite flips < HDD

• HDD failure modes are larger than SSD 

• General method: over-provision unused blocks

• Write on the unused block

• Invalidate previous page 

• Remap new page
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Dynamic wear leveling

• Only pool unused blocks

• Only non-static portion is wear 
leveled

• Controller implementation easy 

• Example:  SSD lifespan 
dependent on 25% of SSD

Source: micron
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Static wear leveling

• Pool all blocks

• All blocks are wear leveled

• Controller complicated
• needs to track cycle # of all blocks

• Static data moved to blocks 
with higher cycle #

• Example:  SSD lifespan 
dependent on 100% of SSD

Source: micron
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SSD TRIM! Sent from the OS

• TRIM

• Command to notify SSD controller about deleted blocks

• Sent by filesystem when a file is deleted

• Avoids write amplification and improves SSD life
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Using SSD (1)

• SSD as main storage device 
• NetApp “All Flash” storage controllers

• 300,000 read IOPS

• < 1 ms response time

• > 6Gbps bandwidth

• Cost: $big

• Becoming increasingly common as SSD costs fall

• Hybrid storage (tiering)
• Server flash

• Client cache to backend shared storage 

• Accelerates applications

• Boosts efficiency of backend storage (backend demand decreases by upto
50%)

• Example: NetApp Flash Accel acts as cache to storage controller

• Maintains data coherency between the cache and backend storage

• Supports data persistent for reboots
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Using SSD (2)

• Hybrid storage

• Flash array as cache (PCI-e cards flash arrays)

• Example: NetApp Flash Cache in storage controller

• Cache for reads

• SSDs as cache

• Example: NetApp Flash Pool in storage controller

• Hot data tiered between SSDs and HDD backend storage

• Cache for read and write
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NetApp EF540 flash array

• 2U 

• Target: transactional 
apps with high IOPS and 
low latency

• Equivalent to > 1000 
15K RPM HDDs

• 95% reduction in space, 
power, and cooling

• Capacity: up to 38TB

Source: NetApp
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Differences between SSD and HDD

SSD HDD

Uniform seek time Different seek time for different sectors

Fast seek time – random read/writes as 
fast as sequential read/writes

Seek time dependent upon the distance

Cost (Intel 530 Series 240GB – $209)
• Capacity – $0.87/GB
• Rate – $0.005/IOPS
• Bandwidth - $0.38/Mbps 

Cost (Seagate Constellation 1TB 
7200rpm - $116)
• Capacity – $0.11/GB
• Rate – $0.55/IOPS
• Bandwidth - $0.99/Mbps 

Power:
Active power: 195mW – 2W
Idle power: 125mW – 0.5 W
Low power consumption, No sleep 
mode

Power: 
Average operating power: 5.4W
Higher power consumption, sleep mode
zero power,  higher wake up cost
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Differences between SSD and HDD

SSD HDD

> 10,000 to > 1million IOPS Hundreds of IOPS

Read/write in microseconds Read/write in milliseconds

No mechanical part – no wear and tear Moving part – wear and tear

MTBF ~ 2 million hours MTBF ~ 1.2 million hours 

Faster wear of a memory cell when it 
is written multiple times

Slower wear of the magnetic bit 
recording 
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Intel X-25E -
$345

(older)
SLC
32 GB
SATA II
170-250MB/s
Latency 75-85us 

Intel 530 - $209

(new)

MLC

240GB

SATA III

up to 540MB/s

Latency 80-85us

Samsung 840 
EVO - $499

(new)

TLC

1TB

SATA III

up to 540MB/s
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Which is cheaper?

HDD?

Yes!

Cheaper per gigabyte of 
capacity.

SSD?

Yes!

Cheaper per IOPS 
(performance).

or
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Workloads

Workloads SSD HDD Why ? 

High write Y Wear for SSD

Sequential IO 
(e.g. media files)

Y Y Both SSD and HDD do great 
on sequential

Log files (small writes) Y Faster seek time

Database read queries Y Faster seek time

Database write queries Y Faster seek time

Analytics – HDFS Y Y SSD – Append operation faster
HDD – higher capacity

Operating systems Y SSD: FAST!!!!
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Other Flash technologies - NVDIMMS

• Revisiting NVRAM
• DDR DIMMS + NAND Flash

• Speed of DIMMS
• extensive read/write cycles 

for DIMMS
• Non volatile nature of NAND 

Flash

• Support added by BIOS
• Backup to NAND Flash 
• Triggered by HW SAVE 

signal

• Stored charge
• Super capacitors
• Battery packs

(SNIA - NVDIMM Technical Brief )
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In future - persistent memory

Source: Andy Rudoff, Intel

• NVM latency closer to DRAM

• Types

• Battery-backed DRAM, NVM with caching, Next-gen NVM

• Attributes: 

• Bytes-addressable, LOAD/STORE access, memory-like, DMA

• Data not persistent until flushed
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Basics of IO Performance 
Measurement
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Motivation and basic terminology

• We cover performance measurement in detail later in the 
semester, but you may need the basics for your project sooner 
than that...

• The short version:

• Sequential workload: MB/s

• Even an SSD does better sequential than random because of 
caching and other locality optimizations

• Random workload: IO/s (commonly written IOPS)

• You need to indicate the IO size, but it’s not part of the metric

• Don’t forget: latency (ms)
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Measurement methodology

• Basic test: do X amount of IO and divide by time T.

• Both X and T may be specified or measured

• Example: 

• Measure time to do 100,000 IOs (X given, T free variable)

• Write to disk at max rate for 60 seconds, look at file size 
(T given, X free variable)

• Problem: measurement variance
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Combating measurement variance (1)

• Measurement varying too much? Make sure your tests are 
long enough! 

• Otherwise you’re testing tiny random effects instead of the actual 
phenomenon under study...
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Combating measurement variance (2)

• Measurement variance never goes away

• Need to characterize it when presenting results, or you won’t be 
trusted!

• How? Take multiple repetitions show average and standard deviation 
(or other variance metric)

• ALL data requires variance to be characterized!
(not just in this course, but in your life)

• For your projects, failure to characterize variance is likely an automatic 
request for resubmission!!

• How to present:

• In tables, show variance next to average (e.g. “251.2 ± 11.6”)

• In graphs, show variance with error bars, e.g.:

0

50

100

150

200

250

300

test1 test2
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Hands-on with the 
Linux storage subsystem

I’m going to live demo a lot of command-line tools and concepts:
watching live or reviewing a video recording 
may be of more value than just the slides.
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Fundamental concepts in UNIX

• UNIX figured out a lot of what is smart in OS design.

• One insight: Everything is a file
• All hardware is represented as special device files. Described by 

“major” and “minor” numbers to tell kernel what device you mean.

• Devices automatically created in special filesystem “/dev”

• Includes block devices (e.g., HDDs and SSDs)

• /dev/sda, /dev/sdb, /dev/sdc, … = SCSI Disk A, B, C, …

• List block devices with lsblk:
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Doing basic IO manually

• Can open/read/write/close block devices like any other
• Requires root access by default (e.g. via sudo)

• Any program can do this – no special interface!

• Bash commands, python, etc.

• Useful to have a tool for doing basic IO with lots of options
• Introducing dd!

• Basic usage:

• dd if=INPUTFILE of=OUTPUTFILE bs=1k count=32

• dd if=/dev/sdb of=/dev/null bs=1 count=1

• Lots more options, see manpage for details!

Defaults to stdin if omitted Defaults to stdout if omitted
Defaults to 

512 if omitted

Defaults to 

all if omitted

Read from disk B Discard result 1 byte in total
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Block device tracing

• Kernel can trace the activity to block devices for us

• Install it:
sudo apt install blktrace

• Default: blktrace stores trace in binary format in a file; 
blkparse used to view it in text

• Can chain the two to get live trace on screen (as root):

blktrace -d /dev/sdb -o - | blkparse -i -

Device major,minor

CPU#
Sequence#

Time (s) PID “Action”
“RWBS”

Block#
#Blocks

App name

Q=Queued
G=Get request
P/U= “Plug”/”Unplug”
I=Insert into device queue
D=Device command issued
C=Completed

See man blkparse for more

R=Read
W=Write

N=None (placeholder)

D=Discard (trim)

+

A=readahead

S=synchronous
  more…
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Let’s directly use this disk!

• Write “hello” to the very front of it? Easy:

• echo hello > /dev/sdb

• Read the raw bytes of the disk?

• Could use ‘cat’, but it will read the whole disk…

• Can use ‘dd’, but what about non-text content?

• Need a way to interpret binary bytes so we can see them onscreen

• We want a hex dump

• Three flavors:

•hd: Gives binary+ascii dump by default (other options available)

•hexdump: Get a binary+ascii dump with hexdump –C

(other options available)

•od: Gives octal by default (other options available)

* means “this row repeats for a while
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Living without a filesystem

• So far, no filesystem. Screw it – we don’t need a filesystem!

• I put my taxes at offset 1000

echo “IRS form 1040 …” | dd of=/dev/sdb bs=1 seek=1000

• I put my dog picture at offset 2000

dd if=dog.jpg of=/dev/sdb bs=1 seek=2000

• I can retrieve the stuff!
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Inventing the filesystem

• Wow, remembering these offsets is hard. 
I’ll write them down…ON THE DISK!

• echo “taxes: 1000, dog: 2000, …” > /dev/sdb

• Wow, manually doing the seeks to read/write areas of the disk is hard. 
I’ll invent OS functions that do it for me…and update the file locations 
automatically!!!!!!!

• I’ll call the data containers “files”

• I’ll organize them into hierarchical “directories”

• I’ll give them the concept of “size” so I know when they end

• I’ll keep track of what areas of the disk aren’t used and call that “free”

• I’ll call that special info that describes files my 
“meta-data”

• To access data, programs will “open” the file 
(confirm it exists), then “read” and “write” to it, 
then “close” it – that’s a great interface!



54

Life was good, until….

• “I love that my whole hard drive is now organized!”

• But wait, what’s this? What if you have ANOTHER DRIVE?????
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Filesystem trees in UNIX

• Another UNIX insight: One global hierarchy
• A UNIX system has a single root directory with a root file system

• Other filesystems can be “mounted” in directories under the root

• Also, filesystems don’t have to just hold “real” files on “real” 
storage devices – there are virtual filesystems:

• /proc – info about processes and basic system info (used by top)

• /sys – info about kernel (used by blktrace)

• /dev – access to device files themselves (managed by udev)

• Ramdisk – files live in memory, wiped on reboot (e.g. tmpfs)

“Real” root (/)

Other FS root

Mount

the other FS

“Real” root (/)
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See what’s mounted

• Two commands to see what’s mounted:
• mount – shows all filesystems (real and virtual)

• df – shows disk free space on filesystems that have that concept

• (Side-effect: shows fewer “fake” filesystems, more concise)

Root device!
Device files

Ramdisk temp stuff

Tons of virtual 

filesystems on 

modern Linux
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Partitioning

• What if I want to put multiple filesystems on one device?

• Examples:

• Multiple operating systems (e.g. Windows and Linux)

• An area for files and an area for virtual memory swap space

• Keep the OS separate from user home directories (so user data 
filling up doesn’t affect the OS)

• Solution: partitioning

• Widely supported scheme to divide up a disk; partitions are contiguous 
and small in number (usually 1-3).

• Partitions labeled with integer that hints at what type of data is there.

• Two standards: MBR (deprecated) and GPT (GUID Partition Table).

• The partition table occupies beginning of disk, file systems actually 
live within partitions. The OS knows about this and gives partitions 
numbered device files:
/dev/sdb is partitioned into /dev/sdb1, /dev/sdb2, etc.
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Partitioning with cfdisk

• Run cfdisk /dev/sdb

• Follow prompts and we can make partitions, set type, etc.

• Hit “Write” when done.     Result in lsblk:

New (or erased) 

disk

We want this guy
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Filesystem choices

• Let’s put a filesystem on, but which one?

• Common picks:

• ext4 – common Linux default

• btrfs – fancy Linux option with lots of special features

• FAT – classic Windows/DOS filesystem still in use on SD cards; 
called vfat in Linux

• NTFS – modern Windows filesystem

• HFS+ - modern Mac OSX filesystem

• Need to initialize a filesystem: write on-disk metadata 
structures on that represent empty filesystem. Use mkfs

• Let’s pick a simple filesystem: vfat
(Why? Because ext4 does fancy background stuff that gets noisy to trace)

• Run mkfs.vfat /dev/sdb1 

• Watch blktrace as it goes – wheeeee!
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Let’s mount it

• Make an empty dir as a mountpoint: mkdir /mnt/blah

• Mount it: mount /dev/sdb1 /mnt/blah

• Kernel will scan partition and auto-detect type of filesystem

• Will load correct filesystem driver

• Now, OS calls to paths under there will get handled by that driver

• Driver satisfies all OS calls by doing readblock/writeblock requests to 
the underlying block device

• That’s how filesystems work!
User apps

VFS

ext4 vfat ntfs

Buffer cache

Disk drivers

Physical disk

< Common filesystem interface

< Cache for disk blocks

Figure adapted from Gotzon Gregor

A cache! Let’s 

experiment and 

understand this…
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Test the block cache (1)

echo hi > file 

• No blktrace output! (OS cache is writeback by default)

cat file 

• No blktrace output! (Cache hit)

(Wait about a minute, it posts later to blktrace)

• Yes blktrace output! (Cache being flushed on a timer, see metadata+data changes)

echo hi > file 

• No blktrace output! (Writeback cache again)

sync 

• Yes blktrace output! (This command forces OS to flush cache)

cat file 

• No blktrace output! (Still a hit, just block isn’t dirty in cache)
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Test the block cache (2)

echo 3 > /proc/sys/vm/drop_caches

• Writing to this special file tells kernel to drop caches;

• No blktrace output though, but ramcache was cleared.

cat file 

• Blktrace output – we miss because we dropped caches

umount /mnt/blah

mount –o sync /dev/sdb1 /mnt/blah

• Unmount and remount with the ‘sync’ mount option

• Forces writethrough cache mode!

echo hi > file

• Blktrace output immediately! No writeback cache, writethrough instead

cat file

• No blktrace output - it still caches reads
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Let’s trace from the other side

• We’ve been tracing the block device

• What about the OS requests?

strace

• Shows each OS syscall done by a program. 

• Works on a command by default; can attach to already-running 
program if desired

• Have to wade through some “noise” (unrelated calls), not hard with a 
little experience

• VERY powerful and useful – can determine behavior of software 
without looking at source code or machine instructions!

User apps

VFS

ext4 vfat ntfs

Buffer cache

Disk drivers

Physical disk

blktrace

strace
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strace example

root@esaXX:/mnt/blah# strace dd if=/dev/sdb bs=1 count=1

execve("/usr/bin/dd", ["dd", "if=/dev/sdb", "bs=1", "count=1"], 0x7ffec5104518 …) = 0

{A bunch of openat, pread64, mmap, mprotect, rt_sigaction, brk, etc.: set up dynamic libraries and prep malloc (ignore)}

openat(AT_FDCWD, "/dev/sdb", O_RDONLY)  = 3

dup2(3, 0)                              = 0

close(3)                                = 0

lseek(0, 0, SEEK_CUR)                   = 0

{A bunch of openat and read calls relating to “locale” – language translations (ignore)}

read(0, "\0", 1)                        = 1

write(1, "\0", 1 )                      = 1

close(0)                                = 0

close(1)                                = 0

write(2, "1+0 records in\n1+0 records out\n", 311+0 records in

1+0 records out

) = 31

write(2, "1 byte copied, 0.000672287 s, 1."..., 381 byte copied, 0.000672287 s, 1.5 kB/s) = 38

write(2, "\n", 1

)                       = 1

close(2)                                = 0

exit_group(0)                           = ?

+++ exited with 0 +++

Open the input device, rename it to file descriptor 0 (dd 
likes to pretend its input is always stdin, which is 0)

Read the one requested byte from fd 0 (disk) and write 
to fd 1 (stdout), then close both.

Report to stderr the statistics. Blue stuff is dd’s actual 
output to stderr; black is strace telling us about it.
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Let’s play

• Let’s try some other strace+dd combos,
and let’s watch blktrace as we do!

• Things to observe
• Note how bs sets the read/write size for OS calls, but a single call 

could turn into many block IOs

• Note the effect of read-ahead caching by the OS

• Note how the cache can be a mix of hits and misses

• We can use the “-t” option with blkparse to get timing info

• Observe the correlation between block operations and slower dd 
results (i.e., cache misses)
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Architecture conclusions

• Disks are block devices

• All devices in Linux/UNIX are represented by device files; can directly 
interact with

• Disk blocks are cached in RAM by operating system (buffer cache)

• Block devices are cumbersome to manually store data, 
so we invent filesystems

• OS handles filesystems – many filesystems can be mounted at once;
the VFS layer pivots among them, using the right filesystem driver

• Filesystem driver will issue read/write requests to disk driver

User apps

VFS

ext4 vfat ntfs

Buffer cache

Disk drivers

Physical disk

< Common filesystem interface

< Cache for disk blocks

Figure adapted from Gotzon Gregor
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Tool conclusions

• We learned lots of great tools/commands:
• lsblk: View block devices

• df: View attached “real” filesystems (and free space)

• mount: Without arguments, shows all mounted filesystems

• dd: Simple tool to do sequential IO operations

• hd and hexdump: View binary data in human-readable way

• mount and umount: Mount and unmount filesystems

• cfdisk: Create and manage disk partitions

• mkfs.*: Create various filesystems on a block device

• blktrace and blkparse: Trace IO operations to physical block devices

• strace: Trace system calls being made by a program

• sync: Force OS to flush all dirty blocks in writeback cache to disk

• echo 3 > /proc/sys/vm/drop_caches: Force OS to lose entire block cache content
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Questions?
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Backup slides
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The I/O Subsystem
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I/O Systems

Processor

Cache

Memory - I/O Bus

Main
Memory

I/O
Controller

Disk Disk

I/O
Controller

I/O
Controller

Graphics Network

interrupts



72

I/O Interface

Independent I/O 
Bus

CPU

Interface Interface

Peripheral Peripheral

Memory

memory
bus

Seperate I/O instructions (in,out)
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Memory Mapped I/O
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Programmed I/O (Polling)

CPU

IO Controller

device

Memory
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read
data
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busy wait loop
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computationally
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Interrupt Driven Data Transfer

CPU

IO Controller

device
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Direct Memory Access (DMA)

• Interrupts remove overhead of polling…

• But still requires OS to transfer data one word at a time

• OK for low bandwidth I/O devices: mice, microphones, etc.

• Bad for high bandwidth I/O devices: disks, monitors, etc.

• Direct Memory Access (DMA)

• Transfer data between I/O and memory without processor control

• Transfers entire blocks (e.g., pages, video frames) at a time

• Can use bus “burst” transfer mode if available

• Only interrupts processor when done (or if error occurs) 
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DMA Controllers

• To do DMA, I/O device attached to DMA controller

• Multiple devices can be connected to one DMA controller

• Controller itself seen as a memory mapped I/O device

• Processor initializes start memory address, transfer size, etc.

• DMA controller takes care of bus arbitration and transfer details

• So that’s why buses support arbitration and multiple masters!

CPU ($)

Main

Memory Disk

DMA DMA

display NIC

I/O ctrl

Bus
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I/O Processors

• A DMA controller is a very simple component

• May be as simple as a FSM with some local memory

• Some I/O requires complicated sequences of transfers

• I/O processor: heavier DMA controller that executes instructions

• Can be programmed to do complex transfers

• E.g., programmable network card

CPU ($)

Main

Memory Disk

DMA DMA

display NIC

IOP

Bus
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Summary: Fundamental properties of I/O systems

Top questions to ask about any I/O system:

• Storage device(s):

• What kind of device (SSD, HDD, etc.)?

• Performance characteristics?

• Topology:

• What’s connected to what (buses, IO controller(s), fan-out, etc.)?

• What protocols in use (SAS, SATA, etc.)?

• Where are the bottlenecks (PCI-E bus? SATA protocol limit? IO 
controller bandwidth limit?)

• Protocol interaction: polled, interrupt, DMA?


	Slide 1: ECE566 Enterprise Storage Architecture  Spring 2024
	Slide 2: Hard Disk Drives (HDD)
	Slide 3: History
	Slide 4: Overview
	Slide 5: Basic schematic
	Slide 6: Generic hard drive
	Slide 7: Types and connectivity (legacy)
	Slide 8: Types and connectivity (modern)
	Slide 9: Hard drive capacity
	Slide 10: Seeking
	Slide 11: Average seek time
	Slide 12: Zoning
	Slide 13: Sparing
	Slide 14: Caching and buffering
	Slide 15: Command queuing
	Slide 16: Time line
	Slide 17: Disk Parameters
	Slide 18: Solid State Disks (SSD)
	Slide 19: Introduction
	Slide 20: Evolution of SSDs
	Slide 21: Flash memory primer
	Slide 22: Memory cells of NAND flash
	Slide 23: SSD internals
	Slide 24: SSD operations
	Slide 25: SSD internals
	Slide 26: SSD controller
	Slide 27: Preemptive erasure
	Slide 28: Wear leveling
	Slide 29: Dynamic wear leveling
	Slide 30: Static wear leveling
	Slide 31: SSD TRIM! Sent from the OS
	Slide 32: Using SSD (1)
	Slide 33: Using SSD (2)
	Slide 34: NetApp EF540 flash array
	Slide 35: Differences between SSD and HDD
	Slide 36: Differences between SSD and HDD
	Slide 37
	Slide 38: Which is cheaper?
	Slide 39: Workloads
	Slide 40: Other Flash technologies - NVDIMMS
	Slide 41: In future - persistent memory
	Slide 42: Basics of IO Performance Measurement
	Slide 43: Motivation and basic terminology
	Slide 44: Measurement methodology
	Slide 45: Combating measurement variance (1)
	Slide 46: Combating measurement variance (2)
	Slide 47: Hands-on with the  Linux storage subsystem
	Slide 48: Fundamental concepts in UNIX
	Slide 49: Doing basic IO manually
	Slide 50: Block device tracing
	Slide 51: Let’s directly use this disk!
	Slide 52: Living without a filesystem
	Slide 53: Inventing the filesystem
	Slide 54: Life was good, until….
	Slide 55: Filesystem trees in UNIX
	Slide 56: See what’s mounted
	Slide 57: Partitioning
	Slide 58: Partitioning with cfdisk
	Slide 59: Filesystem choices
	Slide 60: Let’s mount it
	Slide 61: Test the block cache (1)
	Slide 62: Test the block cache (2)
	Slide 63: Let’s trace from the other side
	Slide 64: strace example
	Slide 65: Let’s play
	Slide 66: Architecture conclusions
	Slide 67: Tool conclusions
	Slide 68: Questions?
	Slide 69: Backup slides
	Slide 70: The I/O Subsystem
	Slide 71: I/O Systems
	Slide 72: I/O Interface
	Slide 73: Memory Mapped I/O
	Slide 74: Programmed I/O (Polling)
	Slide 75: Interrupt Driven Data Transfer
	Slide 76: Direct Memory Access (DMA)
	Slide 77: DMA Controllers
	Slide 78: I/O Processors
	Slide 79: Summary: Fundamental properties of I/O systems

